compoundchem:

Studying organic chemistry this year? You can now download PDF files of all the organic chemistry graphics posted to the site so far, including all the reference sheets, reaction maps, isomerism and formulae guides, right here: http://goo.gl/79xw1J

compoundchem:

Came across this fantastic poster showing a range of different bioluminescent organisms today. It also shows some of the chemical structures responsible.You can see a larger, more readable version on the website of the creator, Eleanor Lutz, at http://tabletopwhale.com/index.html

compoundchem:

Came across this fantastic poster showing a range of different bioluminescent organisms today. It also shows some of the chemical structures responsible.

You can see a larger, more readable version on the website of the creator, Eleanor Lutz, at http://tabletopwhale.com/index.html

Vampire Weekend Giving Up The Gun
[Flash 9 is required to listen to audio.]
2887 Plays
「 inspiration really is important 」

(Source: komarikishigami)

(Source: aprettyfire)

georgemallory:

nothing will fuck you up as much as the realization that there’s no real reason the alphabet needs to be in order

sagansense:

Birth of New Species Requires Very Few Genetic Changes
Only a few genetic changes are needed to spur the evolution of new species — even if the original populations are still in contact and exchanging genes. Once started, however, evolutionary divergence evolves rapidly, ultimately leading to fully genetically isolated species, report scientists from the Univ. of Chicago in Cell Reports.
“Speciation is one of the most fundamental evolutionary processes, but there are still aspects that we do not fully understand, such as how the genome changes as one species splits into two,” says Marcus Kronforst, Neubauer Family assistant professor of ecology and evolution, and lead author of the study.
To reveal genetic differences critical for speciation, Kronforst and his team analyzed the genomes of two closely related butterfly species, Heliconius cydno and H. pachinus, which only recently diverged.
Heliconius cydno and H. pachinus butterflies. Image: Univ. of Chicago, Marcus Kronforst
Occupying similar ecological habitats and able to interbreed, these butterfly species still undergo a small amount of genetic exchange.
The researchers found that this regular gene flow mutes genetic variants unimportant to speciation — allowing them to identify key genetic areas affected by natural selection. The butterfly species, they discovered, differed in only 12 small regions of their genomes, while remaining mostly identical throughout the rest. Eight of these coded for wing color patterning, a trait important for mating and avoiding predation, and under intense selection pressure, while the other four remain undescribed.
“These 12 spots appear to only function well in the environment their species occupies, and so are prevented from moving between gene pools, even though other parts of the genomes are swapped back and forth,” Kronforst says.
The team also compared the genomes of these two groups to a third species, still closely related but further removed on an evolutionary time scale. Here, they found hundreds of genomic changes, indicating that the rate of genetic divergence accelerated rapidly after the initial changes took hold.
“Our work suggests that a few advantageous mutations are enough to cause a ‘tug-of-war’ between natural selection and gene flow, which can lead to rapidly diverging genomes,” Kronforst says.
Kronforst and his team plan to characterize the remaining four divergent genome areas to look for functions important to speciation. They also are studying why species more commonly arise in tropical areas.
“It is possible that this type of speciation, in which natural selection pushes populations apart, has been important in the evolution of other organisms. It remains to be seen whether it is a common process though,” Kronforst says.
Source: LaboratoryEquipment
Related Recommended Reading: Endless Forms Most Beautiful: The New Science of Evo Devo (Evolutionary Development) by Sean B. Carroll

sagansense:

Birth of New Species Requires Very Few Genetic Changes

Only a few genetic changes are needed to spur the evolution of new species — even if the original populations are still in contact and exchanging genes. Once started, however, evolutionary divergence evolves rapidly, ultimately leading to fully genetically isolated species, report scientists from the Univ. of Chicago in Cell Reports.

“Speciation is one of the most fundamental evolutionary processes, but there are still aspects that we do not fully understand, such as how the genome changes as one species splits into two,” says Marcus Kronforst, Neubauer Family assistant professor of ecology and evolution, and lead author of the study.

To reveal genetic differences critical for speciation, Kronforst and his team analyzed the genomes of two closely related butterfly species, Heliconius cydno and H. pachinus, which only recently diverged.

imageHeliconius cydno and H. pachinus butterflies. Image: Univ. of Chicago, Marcus Kronforst

Occupying similar ecological habitats and able to interbreed, these butterfly species still undergo a small amount of genetic exchange.

The researchers found that this regular gene flow mutes genetic variants unimportant to speciation — allowing them to identify key genetic areas affected by natural selection. The butterfly species, they discovered, differed in only 12 small regions of their genomes, while remaining mostly identical throughout the rest. Eight of these coded for wing color patterning, a trait important for mating and avoiding predation, and under intense selection pressure, while the other four remain undescribed.

“These 12 spots appear to only function well in the environment their species occupies, and so are prevented from moving between gene pools, even though other parts of the genomes are swapped back and forth,” Kronforst says.

The team also compared the genomes of these two groups to a third species, still closely related but further removed on an evolutionary time scale. Here, they found hundreds of genomic changes, indicating that the rate of genetic divergence accelerated rapidly after the initial changes took hold.

“Our work suggests that a few advantageous mutations are enough to cause a ‘tug-of-war’ between natural selection and gene flow, which can lead to rapidly diverging genomes,” Kronforst says.

Kronforst and his team plan to characterize the remaining four divergent genome areas to look for functions important to speciation. They also are studying why species more commonly arise in tropical areas.

“It is possible that this type of speciation, in which natural selection pushes populations apart, has been important in the evolution of other organisms. It remains to be seen whether it is a common process though,” Kronforst says.

Source: LaboratoryEquipment

Related Recommended Reading: Endless Forms Most Beautiful: The New Science of Evo Devo (Evolutionary Development) by Sean B. Carroll

image

science-junkie:

The Origin of Humans Is Surprisingly Complicated
Human family tree used to be a scraggly thing. With relatively few fossils to work from, scientists’ best guess was that they could all be assigned to just two lineages, one of which went extinct and the other of which ultimately gave rise to us. Discoveries made over the past few decades have revealed a far more luxuriant tree, however—one abounding with branches and twigs that eventually petered out. This newfound diversity paints a much more interesting picture of our origins but makes sorting our ancestors from the evolutionary dead ends all the more challenging.
Source: Scientific American

science-junkie:

The Origin of Humans Is Surprisingly Complicated

Human family tree used to be a scraggly thing. With relatively few fossils to work from, scientists’ best guess was that they could all be assigned to just two lineages, one of which went extinct and the other of which ultimately gave rise to us. Discoveries made over the past few decades have revealed a far more luxuriant tree, however—one abounding with branches and twigs that eventually petered out. This newfound diversity paints a much more interesting picture of our origins but makes sorting our ancestors from the evolutionary dead ends all the more challenging.

Source: Scientific American

›–Yoko Kanno fugl
[Flash 9 is required to listen to audio.]
1240 Plays
Remember: If confronted by a librarian while looking for a book to check out, do not attempt to escape by climbing a tree. There are no trees in the library.